
1 Adeles
The most eye catching symbol in the above theorem is of course the A. I believe
this to be the Adele ring of some field so we begin by attempting to understand
the construction of the Adele ring of a field. Pleasantly this merges two beautiful
areas of mathematics, topology and algebra.

The journey to Adeles will be led by [CF76] with some modernising inspired
by [Agh], and will take us through valuations, places and global fields.

1.1 Metric Spaces
The first abstraction we will need is that of an absolute value (or a multiplicative
valuation) on a field. This is a straightforward imitation of the absolute value
on R or C or a norm on a vector space

Definition. An absolute value or (multiplicative) valuation on a field k is a
function

| − | : k → R≥0

satisfying the following properties ∀α, β ∈ k

• |α| = 0 ⇐⇒ α = 0

• |αβ| = |α||β|

• |α+ β| ≤ |α|+ |β|

If in addition the valuation satisfies

∀α, β ∈ k |α+ β| ≤ max{|α|, |β|}

then we call it non-archimedean, and otherwise we call it archimedean. By a the-
orem of Gelfand and Tornheim [CF76] all archimedean valuations are essentially
the absolute value on C , so they will not be of great interest.

Just as in basic analysis we can see that an absolute value induces a metric
on k via

d(x, y) = |x− y|

and hence induces a metric topology on k. So we can think of a field with a
valuation naturally as a metric topological space that is moreover a topological
field [CF76]. will call this pair (k, | − |), where k has the metric topology, a
valuation field. Two valuations on the same field are said to be equivilent if
they induce the same metric topology.

Definition. A place is an equivalence class of valuations under this equivalence
relation.

The completion of k with respect to this metric, as a field with a valuation
itself, which we will denote k̄, is important in the description of Adele rings.
There are three equivilent descriptions of it that we can give
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• Explicit

• As an embedding

• Via a universal property

1.1.1 Explicit Completion

In concrete terms we could define k̄ as the set

k̄ = {[(xi)i∈N]∼ : xi ∈ k such that (xi)i∈N is Cauchy}

where [ ]∼ denotes the equivilence class of a Cauchy sequence under the relation

(xi)i∈N ∼ (yi)i∈N if and only if lim
i→∞

|xi − yi| = 0

Indeed this is the metric completion of k. We then give this the valuation

|(xi)|k̄ = lim
i→∞

|xi|k

One could then show that up to isometric field isomorphism this is the unique
complete field with valuation that contains k such that k̄ is the closure of the
image of k under the valuation | − |k̄.

1.1.2 Embedding Completion

Alternitively one could define the completion of k by first proving that every
valuation field can be isometrically embedded in some complete valuation field k̄
such that k̄ is the closure of the image of k in k̄ under this isometric embedding.
Then show that this k̄ is unique up to field and metric isormophism.

1.1.3 Completion as a Functor

As usual when dealing with objects with a lot of information attached the lan-
guage of category theory can, at least superficially, simplify the process.

We could start the process again by noting that valuation fields form a
category. The morphisms are those that are most natural between a metric
space which is also a topological field, isometric ring homomorphisms. Note
that isometries are all continuous so we are also accounting for the topological
structure too.

Then the completion of an object in this category is the universal object and
arrow pair (k̄, i) such that k̄ is complete, i : k → k̄ and any other morphism
f : k → L̄, where L̄ is complete, factors through k̄ i.e.

k k̄

L̄

f

i

∃!f̄
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note that a morphism in this category is always injective (because the kernel
is an ideal and 1 6= 0 in a field) so it is justified to think of this as an embedding.
Moroever we know such an object exists because we have explicitly constructed
one.

We can also define another category, that of complete valuation fields. If we
assign to f : k → ` the unique lift of i` ◦f : k → ¯̀ then we get a functor between
these two categories that we may call the completion.

1.2 Local VS Global Fields
A global field is a finite extension of Q or the field of rational functions with
Coefficients in Fq, denoted Fq(X).

A local field is a valuation field that is complete wrt the valuations topology
which has a finite residue field.

None of the global fields are ever local, regardless of the valuations.
why this is local vs global. 1. the global sections of a Riemann surface? 2. The ring of integers
of the local one is a local ring? 3. Local rings are the completions of global fields? The last com-
ment is true but I suspect that I have no idea why and that a good portion of understanding for
the class field theory stuff might hide in there.

1.3 Adeles
The construction of the Adele ring as a topological space requires a construction
called the restricted product.

Definition. Given a family of topological spaces Ti, i ∈ I and a family of open
sets Uj ⊆ Tj , j ∈ J ⊆ I we define as a set

res∏
i∈I

Ti = {(xi)i∈I : xi ∈ Ti and for all but finitely many j ∈ J, xj ∈ Uj}

This set with the topology generated by the basis of opens{∏
i∈I

Xi : Xi ⊆ Ti open and for all but finitely many j ∈ J,Xj = Uj

}

is called the restricted product of Ti with respect to Uj.

We are finally ready to define the Adele ring of a global field.
Given a global field k we can consider its collection of places {| − |ν}. Then

we let kν be the completion of k with respect to | − |ν . We need open sets to
take the restricted product over so for each non-Archimedian place define its
ring of integers

Oν = {a ∈ kν : |a| ≤ 1}

To see that these are open we need to see that each multiplicative valuation has
a discrete image and therefore |a| ≤ 1 ⇐⇒ |a| < 1 + ε for some epsilon small,
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and so this is a ball and hence open in the metric topology. Then we can take
the restricted product of all the kν with respect to these open sets

Vk =

res∏
ν

kν

which we call the Adele ring of k.
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